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Abstract Agriculture research has a strong emphasis on biotic and abiotic stresses because of the 
significant economic losses to cash crops. Since plant stress has an impact on crop quality and 
yield, every effort must be made to identify and treat the problem of plant stress. Geographic 
Information Systems (GIS) and remote sensing are a new innovative alternative to the conventional 
diagnosis, detection and management of diseases by   spectral symptoms. The production of crops, 
including crop protection, can benefit greatly from this contemporary technology. Utilizing data 
from GIS and remote sensing, disease-affected plants may be identified by the variation in their 
reflectance spectra when compared to healthy plants.  GIS has been widely utilized as a significant 
instrument for epidemiological research. Remote sensing is a rapid and effective technology that 
may gather information on the spectral characteristics of earth surfaces from a variety of locations, 
including satellites and other platforms. The most recent studies are based on the information from 
spectral. multispectral, and hyperspectral sensors that measure reflectance, fluorescence, and 
radiation emission, or from electronic noses that detect volatile organic compounds released from 
plants or pathogens. These sensors may also have the ability to characterize the health status of 
crops. Agriculture will become more sustainable and safer using GIS and remote sensing 
technologies, which will also considerably aid to greatly specialize diagnostic and management 
outcomes. These technologies will eventually become a key piece of a farmer's precision equipment 
mix, working in tandem with advancements in digitalization and artificial intelligence for precision 
application across pathogens and crop management demands. 
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Introduction 
 

According to Larcher (1995), plant stress is defined as a significant 
departure from the ideal circumstances for plant growth that may have adverse 
effects when the limit of the plant's capacity to adapt is reached. Regardless the 
crop age, almost every component of a plant can gets stressed. Biological stress 
causes harm via a variety of plant physiology is heavily influenced by pest, which 
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in turn causes usual symptoms emerged as a result. Plants may respond to stress 
from pests and diseases in a multitude of ways, such as wilting, chlorosis, or 
photosynthetic necrosis of the leaves reduced leaf size, stunted development, or in 
certain circumstances, plant components.  Numerous alien species, including 
fungi, bacteria, viruses, nematodes, weeds and phytoplasmas, have a negative 
impact on crop production globally. These species spread unhindered over great 
distances via people, goods, and planting materials. There is a need to more 
effectively control the production of agricultural commodities since there is a 
global shortage of agricultural products. The loss of crop yields caused by 
agricultural pathogens causes an imbalance between the production of agriculture 
worldwide and the demand for food by the world's population.  Plant disease 
epidemiology gives us some knowledge on the spread of diseases in various areas 
with diverse climatic conditions and facilitates our work appropriate for managing 
operations and forecasts concerning the disease's spread to several other places 
(Haggag et al., 2017; Haggag and Ali 2019; Haggag, 2021). If it is feasible to 
quickly determine the pest's present state and take action, pest management can be 
more effective. 

Advanced technologies, such as GIS and remote sensing have the potential 
to improve crop protection and agricultural crop output (Haggag, 2021; Zhou et 
al., 2021; Nikhilraman et al., 2022). This review discusses the use of Geographic 
Information Systems and remote sensing technologies as innovative tools in plant 
diseases detection and management. 
 
Geographic Information System (GIS) 
  
 Tools from geographic information systems (GIS) have several uses in 
managing Plant Genetic Resources (PGR). In addition to georeferencing, diversity 
distribution mapping, and projecting optimal places for future collection of crop 
plants and endangered taxa, GIS also works in conjunction with 
passport/herbarium/gene bank databases (Sivaraj et al., 2022). 
 They have been employed in ecogeographic surveys to identify 
diversity, organize fieldwork, and gather PGR. They are also helpful in identifying 
PGR conservation areas, specific species, places with a lot of species, and 
vegetation types that are not adequately or not at all represented in conservation 
programs. GIS applications may be used to locate hotspots, the spread of 
pathogens and viruses, create early warning systems, create risk assessment 
models, help with site-specific protective measures, in terms of biosecurity 
(Sivaraj et al., 2022). 
 The use of the Geographic Information System (GIS) has expanded the 
scope of diseases control (Haggag et al., 2017; Haggag, 2021). Ample 
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opportunities for pathogens monitoring, identification, and time management in 
agriculture have been made possible by recent developments in the use of GIS 
technology. Finding and recording the interactions of physical factors at other 
places with various species, soil textures, elevation, and land use may be 
significant for improving diseases management strategies. GIS approaches in 
diseases control may offer in-depth details on the physical and biological 
interactions with metapopulation dynamics, as well as information on spatially 
explicit models to forecast future pest populations by choosing suitable habitat 
conditions. 
 Geospatial analysis, mapping, and large-scale data collecting are 
required to stop the spread of pest diseases. It is used to identify and assess patterns 
in order to appreciate how the illness interacts spatially with insects, soil, and 
plants. GIS is used to track monitoring programs including spraying programs, 
trapping solutions, treatment, and other measures by providing precise location 
information that helps pest control decisions. Based on the collected data, GIS can 
aid project risk assessment models for pest management and control. Develop a 
viable strategy to stop the spread of illness and identify important intervention 
sites. With the use of digital tools like GIS and Global Positioning Systems (GPS), 
agricultural lands may be extremely carefully mapped. Production systems for 
precision agriculture could be created using this technology, soil testing, and yield 
monitoring. 
 Through data visualization, data querying, data management, and 
analysis of risk pathways, GIS has been used for pest monitoring and detection. It 
can also be useful in identifying places where a pest introduction is most likely to 
occur. In order to assess the area, change in an alien species' spread and to identify 
it, prediction models can be created. The application GIS is significant in plant 
quarantine because it benefits the economy, takes a proactive approach to 
protecting agriculture, aids in quality control, and serves as a decision-support 
system (Sivaraj et al., 2022). 
 
Remote sensing 
 
 Principle of operation 
 Remote sensing is defined as the technique of obtaining information 
about objects through the analysis of data collected by special instruments that are 
not in physical contact with the investigated object. The definition given by the 
American Society for Photogrammetry and Remote Sensing (ASPRS); remote 
sensing is the science, art, and technology of gathering trustworthy information 
about real world objects and their surroundings without making direct physical 
touch. Remote sensing technology may be based on the ground, in the air, or 
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through satellite. Satellite remote sensing succeeded in aerial remote sensing in the 
1960s. The process of remote sensing began with the sun (passive) or with the 
satellite itself (active). When radiation strikes the earth's surface, it is absorbed, 
transmitted, and reflected. These reflected radiations are then picked up by satellite 
sensors, which then use them to learn about the components that make up the 
terrestrial environment. These include terrain, vegetation, water bodies, 
hydrological cycles, and agricultural ecosystems. Different electromagnetic 
spectrum wavelengths are used to record the reflected radiations. The near infrared 
(NIR) ranges from 0.7 to 1.3 micrometers, the middle infrared (MIR) ranges from 
1.3 to 3 micrometers, the thermal infrared (TIR) ranges from 3.0 to 14 
micrometers, and the microwave ranges from 1 mm to 1 micrometer are all 
recorded. It simply referred to the collection of information about an object 
without coming into contact. Also, it can define as an image of the scene being 
seen often represents the output of remote sensing equipment. It is a quick, non-
intrusive, and effective method for gathering and analyzing the spectral 
characteristics of earth surfaces from a variety of distances, from satellites to 
ground-based platforms. Technology for remote sensing is helpful for calculating 
and logging electromagnetic radiation emissions from the target region and the 
sensor equipment. Cameras, radar systems, electromagnetic scanners, and video 
cameras are some of the several sensor instruments employed in this technology. 
Its operation is reliant on electromagnetic energy and the interaction between 
radiation and earthen targets. 
 
Remote sensing and crop health 
 
 For field crops, horticulture, plant breeding, and the enhancement of 
fungicide efficacy, it is crucial to accurately predict plant disease prevalence and 
severity as well as the detrimental effects of plant infections on agricultural 
products. The most frequent procedures for identifying and diagnosing plant 
diseases include visual examination of recognizable symptoms, microscopic 
analysis of morphological characteristics, as well as molecular, serological, and 
other microbiological methods. These techniques are employed in both illness 
diagnosis and academic studies. The identification and measurement of plant 
pathogens and illnesses have undergone revolutionary change in recent decades as 
a result of the development of molecular and serological approaches. In order to 
assess management strategies for the diseases, estimate pathogen variation and 
evolution of new races, choose sources of resistance, and resolve the components 
of complex diseases caused by two or more pathogens and interactions between 
them as well as relationships between the plants and pathogen insight into the pH, 
it is necessary to quantify the pathogen inoculums (Nagasubramanian et al., 2018). 
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To overcome host defenses and adapt to pathogen onslaught, pathogens in nature 
are continually altering and evolving new pathogenicity (Nagasubramanian et al., 
2018). 
 The use of remote sensing technologies to manage pathogens assaults 
and crop stress has become increasingly effective. One of the main advantages of 
employing remote sensing is that it offers a thorough, precise, and timely forecast 
of pest assaults and crop stressors, which may optimize pest control, decrease crop 
loss, and lower cultivation costs (Roy et al., 2023). In addition to pest control, 
remote sensing may identify agricultural challenges such nutrient or water 
shortages, pathogens infestations, and disease development. A crucial part of 
integrated pest control tactics, remote sensing techniques can increase spatial and 
temporal resolution (Roy et al., 2023). It is necessary to adopt and incorporate 
novel strategies and rating systems in order to acquire an objective and trustworthy 
automated diagnosis and detection of plant diseases. It aids in calculating the 
disease's severity.  
 The choice of whether or not to use a fungicide to manage a sensitive 
pathogen depends on both the presence of a symptom and if the severity of the 
diseases exceeds the action threshold level determined from economic 
considerations (Satapathy, 2020). 
 Monocyclic infections (such smut fungus) do not require management 
when symptoms initially present since the damage has already been done. In 
contrast, polycyclic pathogens rarely cause the onset of early disease symptoms, 
and if effective fungicides are available, it may be possible to control the expected 
increase in disease severity from the pathogen's future generations to keep the 
severity of the disease from rising above the economic threshold level.  
 Remote sensing can help protect plants from possible assaults by pests, 
fungus, or bacteria in addition to helping identify plants that are stressed due to a 
lack of nutrients or water. It is feasible to have early warning and stop a pest or 
disease from harming the crops by taking suitable action at an early stage by 
integrating agricultural expertise with remotely sensed data. Diseases can reduce 
chlorophyll and photosynthesis. Area Index (LAI) of a group of plants, alerting 
farmers to take the necessary precautions. In order to reduce the amount of   
chemicals needed in a crop management regime, remote sensing can help identify 
the plants that need fertilizer or pesticides the most. Bawden (1933) and Colwell 
(1956) were the first to utilize visible aerial photography to identify viral infections 
in tobacco and potato crops. 
 Vegetation differs from other land surfaces because it tends to absorb 
strongly the red wavelengths of sunlight and reflect in the near-infrared 
wavelengths. Chlorophyll absorbs light in the red channel (0.58-0.68 microns) and 
foliage reflects light in the near infrared channel (0.72-1.10 microns). Therefore, 
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higher photosynthetic activity will result in lower reflectance in the red channel 
and higher reflectance in the near infrared channel. This signature is unique to 
green plants. Dense vegetation shows up very strongly in the imagery, and areas 
with little or no vegetation are also clearly identified. Spatial and temporal 
variations in vegetation indices have been found to be linked to prevailing climate, 
ecosystem, terrain and soil properties.  
 The NDVI is one of the most common indicators of crop growth 
characteristics and, indirectly, of specific site qualities (Sumfleth and Duttmann, 
2008). A serious problem in partly vegetated areas is the influence of soil 
background reflectance on NDVI, which produces decreasing NDVI values with 
increasing soil brightness under otherwise identical conditions. Therefore, several 
variations on the NDVI have been developed, e.g.  The Soil Adjusted Vegetation 
Index (SAVI), the Transformed SAVI (TSAVI), and the Global Environment 
Monitoring Index. NDVI is calculated from the red and near-infrared reflectance 
(rRed and rNIR) as:  

NDVI = (rNIR - rRed) / (rNIR + rRed) 
The obtained NDVI values are located in the range (-1 to 1), negative 

values point to non-vegetated surfaces, while positive values indicate vegetated 
surfaces. NDVI values more than 0.5 indicating dense vegetation, while values 
less than 0.0 indicating no vegetation (Figure 1). Several soil properties have been 
related to mono-temporal NDVI in local scale studies are root zone soil moisture, 
soil color, soil texture and water-holding capacity and soil carbon and nitrogen 
content. Alternatively, NDVI time series have been used to derive soil patterns by 
analyzing changing NDVI values during a growing season and the onset of 
senescence during a dry season. Hansen et al. (2009) found larger changes in 
vegetation greenness on steeply sloping valley sides with sandy soils than in nearly 
flat, waterlogged valley bottoms. 
 Although utilizing infrared imaging to distinguish between disease-
related alterations that occur in the interior leaf structure of cereal crops. Site-
specific disease control has benefited from the recent application of spectrum 
sensors (Table 1). Hyperspectral technology, for instance, was used to explore the 
identification and quantification of yellow rust in wheat crops (Kuska et al., 2015). 
Two measurement platforms are used in field tests with the hyperspectral camera: 
[1] a ground-based vehicle and [2] unmanned aerial vehicle. These sensors 
particularly use   the electromagnetic spectrum between 400 and 2500 nm, to 
monitor crop canopy and measure light reflected during pathogen infection and 
disease progression in severity of yellow rust in wheat field. For the monitoring of 
crop plant diseases and the evaluation of their effects on production, high spatial 
resolution satellite devices and airborne imaging have been utilized (Rani and 
Jyothi, 2017; Zheng et al., 2018). 
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Figure 1. Normalized difference vegetation index (NDVI) reflects the 
photosynthetic activity (a), variation of NDVI over a cultivated area reflect the 
plant status (b) Available at: http://www.geoscience-environment.com 

 
 As shown in Figure 2 and Table 2, optical sensors have great promise 
for noninvasive diseases diagnosis and detection (Oerke et al. 2014). Imaging and 
noninvasive sensors that can aid in diagnostics and plant disease detection are 
becoming more widely available. Precision agriculture and plant phenotyping 
provide new prospects thanks to advancements in sensor and information 
technology, as well as the growth of GIS. 
 The two categories of remote sensing techniques listed below are based 
on sensors and are used to detect plant diseases: 
1. Imaging strategies 

- RGB camera 
- Multispectral imaging 
- Hyperspectral imaging 
- Thermal photography 
-  Imaging using fluorescence 

2. Methods other than imaging 
- Spectroscopy using the VIS and IR 
- Fluorescence spectroscopy 
-  

 Plant diseases can also be found using other imaging methods, such as 
Terahetz spectroscopy and X-ray imaging, however none of these methods are 
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economical.  The numerous optical sensors used in plant disease detection were 
evaluated by Mahlein (2016) as illustrated in (Table 1). 
 
Table 1. Commonly utilized remote sensing systems for plant disease diagnosis 
and monitoring   

Remote 
sensing 
systems  

Main 
characterist
ics  

Merits 
and 
Demerits  

Application 
capability  

Pictorial representation  

VIS-SWIR  Find out 
destruction 
caused by 
plant 
diseases & 
pest 
infestation 
by emittance 
in VIS-
SWIR 
region.  

Steady, 
provide 
authenticat
ed 
monitoring 
results, but 
poor 
performan
ce on early 
detection.  

High[relative 
instruments & 
algorithms are 
available at 
relatively low 
price]  

 

 
Fluorescen
ce and 
thermal  

Records pre 
symptom 
physiologica
l changes  

Possess a 
capability 
to provide 
presympto
m 
detection. 
But 
currently 
tough to 
apply in 
large area.  

Medium[Lot of 
systems are 
available 
currently for 
research, which 
ar high cost with 
low 
applicability]  

 

SAR & 
Lidar  

Records 
structural 
changes 
caused by 
disease and 
pests  

Capable to 
indicate 
changes in 
plant 
morpholog
y. The 
systems 
and case 
studies are 
presently 
lacking.  

Low[Predomina
ntly remain at 
conceptual 
stage]  
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Figure 2. Overview of the existing sensor technologies for plant disease detection 
and attribution, modified after Oerke et al. (2014) 
 
Different applications 
 
 Applications of remote sensing for effective plant protection crop 
protection against plant diseases is important. In response to this worry, modern 
challenges sprung up with logical arguments. Progressively more viable natural 
and unneighborly arrangements are needed. For the purpose of making a decision 
on a later management practice, the precise diagnosis of the initial infection and 
illness dynamics is crucial. Plant disease sensors may be employed once for quality 
control (by the food industry or quarantine authorities, for example) or they may 
be linked into autonomous systems for the continuous monitoring of crops for 
plant diseases, which entails checking and maintaining a continuous record of the 
crop health status (Nikhilraman et al., 2022). Several examples are summarized in 
Table 2 from the much more recent advancement in various pathosystems utilizing 
various kinds of very sensitive sensors and numerous data analysis pipelines that 
have been published. The several sensor systems described are covered in-depth 
evaluations (Neumann et al., 2014; Mahlein, 2016). 
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Table 2. Examples of research on plant diseases detection by various optical sensors 
(Mahlein, 2016) 

Sensor Crop  Disease/Pathogen  Reference  
RGB Cotton  Bacterial angular (Xanthomonas campestris)  

Ascochyta blight (Ascochyta gossypii) 
Camargo and Smith 
(2009)  

 Sugar beet Cercospora leaf spot (Cercospora beticola),  
Sugarbeet rust (Uromyces betae) 

Neumann et al. (2014)  

 Grapefruit Citrus canker (X. axonopodis)  Bock et al. (2008)  
Spectral 
sensors  

Barley  Net blotch (Pyrenophora teres),  
Brown rust (Puccinia hordei), 

Kuska et al. (2015)  

 Wheat Head blight (Fusarium graminearum),  
Yellow rust (Puccinia striiformis f. sp. tritici) 

Bravo et al. (2003), 
Moshou et al. (2004)  

 Sugarbeet Cercospora leaf spot (C. beticola),  
Sugarbeet rust (U. betae) 

Mahlein et al. (2010, 
2012) Bergstrasser et 
al. (2015)  

 Tomato Late blight (Phytophthora infestans)  Wang et al. (2008)  
Thermal 
sensors  

Sugarbeet  Cercospora leaf spot (C. beticola)  Chaerle et al. (2007)  

 Cucumber Downy mildew (Pseudoperonospora cubensis)  Oerke et al. (2006), 
Berdugo et al. (2014)  

Fluorescence 
imaging  

Wheat  Leaf rust (Puccinia triticina),  
Powdery mildew (Blumeria graminis f.sp. tritici) 

Burling et al. (2011)  

Sugarbeet   Cercospora leaf spot (C. beticola)  Chaerle et al. (2007); 
Konanz et al. (2014)  

 
 Multi-spectral remote sensing for the identification of multi-temporal 
wheat diseases High resolution Quick Bird satellite multispectral multi-temporal 
images was examined by Franke and Menz (2007) for the purpose of locating 
powdery mildew and leaf rust on wheat in Bonn, Germany. The first scene had a 
classification accuracy of 56.8%, but the subsequent scenes had accuracies of 
65.9% and 88.6%, respectively (Franke and Menz, 2007). 
 Aerial photography was first employed to determine cereal Robert 
Colwell, University of California, for studying aerial photography in-depth for the 
first-time observation of yellow dwarf, oat, and wheat black stem rust oat and 
published his work in the magazine Hilgardia in (Colwell, 1956). Irradiation, color, 
and panchromatic This study made use of films (Aerial Ektachrome). 
 Ju et al. (2023) used an unmanned aerial vehicle to collect multispectral 
imagery of the wheat canopy, built a wheat leaf rust monitoring model using the 
backpropagation neural network (BPNN) technique. These models provided a 
theoretical foundation and technological assistance for evaluating plant illnesses 
and screening disease-resistant wheat cultivars while properly tracking leaf rust in 
winter wheat. 
 The use of Airborne Data Acquiring and Registration (ADAR  ) for the 
diagnosis of rice sheath blight rice detection and monitoring system: Qin and 
Zhang (2005) sheath blight disease in central Arkansas, USA, employing four. The 
ADAR collected aerial remote sensing photos (Airborne Data Acquiring and 
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Registration) System 5500. The four bands on the photographs were as follows: 
blue: band 1 (450–540 nm), green: band 2 (530–600 nm). 
 
Hyperspectral remote sensing of plant disease 
  
 Hyperspectral imaging has attracted a lot of attention in agriculture 
recently. By using narrowband sensors, this technique improves the information's 
quantity and quality. The data is based on a spectral Z-axis, spatial X and Y axes, 
and coordinate systems. Winter wheat with yellow rust disease (Puccinia 
striiformis) was subjected to VNIR hyperspectral imaging by Bravo et al. in 2003. 
They grouped the collected data into 19 wavebands, each measuring 23 nm in 
width and spanning the whole spectral range between 463 and 895 nm. According 
to their findings, sick plants had increased reflectance in the VIS region due to 
decreased chlorophyll activity and higher absorption in the NIR area mostly as a 
result of internal leaf structure degradation (Bravo et al., 2003). 
 Hyperspectral imaging data can offer more information than non-
imaging spectral technologies, such as shape, gradient, color, etc. With a 
wavelength variation, hyperspectral imaging technology has a high resolution of 
picture data (Xing, et al., 2019). A nanometer is the resolution level of the 
spectrum in the visible to shortwave infrared region. Numerous spectral bands 
possibly hundreds of them could exist. There are continuous spectral bands, and 
each may yield a full hyperspectral resolution spectral curve. Location of each 
picture pixel, the hyperspectral data frame is therefore created as a picture cube in 
three dimensions, as seen in Figure (3). 
 

 
 

Figure 3. Structure of a cucumber leaf's using hyperspectral image data cube 
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Utilization of hyperspectral data for the illness potato late blight 
 
 The benefits of hyperspectral mapping unity, which can precisely 
monitor crop development and illnesses, are fully used by the implementation of 
hyperspectral imaging technology in agriculture (Wang et al., 2022).  
Hyperspectral data was used by Ray et al. (2011) to analyses potato late blight in 
Amritsar, Punjab. There were 512 channel spectroradiometer between 325 and 
1075 nm. Spectra showing average reflectance of a variety of disease infection 
levels are present in the potato crop (Figure 1). According to the hyperspectral 
reflectance curves, because robust plants reflect light well Region NIR (beyond 
Low red reflectance (about 650 nm) and reflectivity around 750 nm.  Vegetation 
indicators, namely the Normalized Difference Vegetation Index (NDVI), Soil 
Adjusted Vegetation Index (SAVI) Ratio (SR) and Red Edge Indexes   were 
computed via reflecting qualities. The variations in the vegetation indices for 
plants with various disease infestation levels were discovered to be quite 
important. The ideal hyperspectral imaging wavebands to distinguish between 
healthy and diseased plants were 540, 610, 620, 700, 710, 730, and 780, but up to 
25% infection may occur at 1040 nm, reflectance at 710, 720, and 750 nm was 
used for separating infected plants (Ray et al., 2011). 
 

 
 

Figure 4. Reflecting of potato crops at different level of late blight infestation (Ray 
et al., 2011) 
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 Hyperspectral imaging data can reveal stressors brought on by abiotic 
environmental variables, crop growth, and biological harm in addition to 
infections. The most recent machine learning models should be combined with 
hyperspectral data processing techniques for plant disease diagnosis, and fresh 
methods should be presented to handle challenging environmental circumstances. 
Therefore, further biotic or abiotic stress effects on plant spectrum traits may be 
eliminated from models used to identify plant diseases. As a consequence, field 
practice could benefit more from this technology (Wang et al., 2022).  
 
Future perspective 
 
 Plant diseases have a key role in post-harvest yield decreases and huge 
economic losses in agriculture production around the world, especially in light of 
recent climate change. Many effective methods for identifying, monitoring, and 
assessing plant diseases have been developed. Future research should also focus 
on improving pathogen logical analysis, biochemical analysis, and expert 
interpretation of the visual components. Nowadays, interest in hyperspectral 
technology, a non-invasive technique, is growing. As a result, it is important to 
emphasize integration analysis of satellite scales while also researching issues and 
new developments in hyperspectral technologies for plant identification. The use 
of targeted hyperspectral satellite missions results in the gathering, pre-processing, 
and analysis of enormous amounts of data, allowing for the real-time dynamic 
monitoring of plant disease at the regional, national, and international levels. 
 Since new discoveries and advancements are being made to enhance the 
capabilities of the technology, the application of GIS and remote sensing in 
agriculture promises to have a promising future. It is expected that remote sensing 
would keep making a substantial contribution to raising crop output and 
sustainability. One of agriculture's most potential futures is the application of 
artificial intelligence (AI) and machine learning (ML) technologies to remote 
sensing. These technologies allow for the automatic processing of remote sensing 
data and the delivery of real-time information to farmers. Then, farmers may make 
crucial choices regarding crop management, such as when to plant, water, treat 
diseases, and harvest crops. 
 Remote sensing may be a key tool in the agricultural sector, which is 
also facing a significant challenge from climate change, to monitor and adapt to 
changing weather patterns. Farmers may utilize remote sensing to find farms that 
are more susceptible to stress in order to manage their crops more successfully. 
 It's exciting to work in a field that is expanding quickly and where 
remote sensing and GIS in agriculture seem to have a promising future. 
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Conclusion 
  
 The production of agricultural products on a large scale necessitates the 
timely diagnosis of diseases and management. In order to diagnose and spot 
recurring patterns of plant disease as well as other issues like weed infestations 
without coming into physical touch with the plant or plant components, GIS and 
digital imagery are particularly helpful. Strong solutions for disease identification 
and detection with high accuracy and sensitivity that will enhance plant health 
management may come from a highly multidisciplinary approach with a direct 
connection to practical agriculture.  
 Remote sensing offers a quick, non-intrusive, dependable, precise, and 
accurate disease assessments that are useful in keeping track of and predicting 
outbreaks.  Multitemporal data from remote sensing offer enormous promise for 
agricultural the regional mapping of diseases. Based on spectrum using a 
classification methodology is a useful technique for crop finding the sickness.  By 
looking at all of the environmental characteristics and accessible natural resources 
as a whole system, remote sensing has emerged as a viable method for integrated 
pest control.  
 Agriculture has already benefited greatly from remote sensing, and 
things only seem to get better from here. Remote sensing is projected to play a 
more significant role in boosting agricultural yield and sustainability in the years 
to come with the integration of artificial intelligence (AI) and machine learning 
(ML) technologies. technologies, precision agriculture, disease and pest detection, 
climate change adaption, and enhanced data availability.  As a result of its 
integration with other   GIS and remote sensing technologies, its capabilities have 
been further increased, making it a crucial part of integrated pest control methods 
in the twenty-first century. 
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